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Abstract

The attachment of fluid jets to walls when blown closed to these walls is known by the name of the Coanda effect and

is widely used in practice, e.g., for the ventilation and air-conditioning of rooms. When a jet of air cooler than the

ambient air is blown horizontally along the ceiling, the jet adheres to the ceiling over a given distance even though it is

heavier than the ambient air. The aim of this paper is to provide a satisfactory explanation for the phenomenon, on the

basis of a theoretical analysis of the equilibrium of a layer of fluid that is denser than the ambient fluid, when it is driven

by a translation movement in relation to the ambient fluid and is located under a flat wall in a gravity field. The analysis

makes it possible to formulate the separation distance of the jet depending on its properties at the blowing slot. That

distance is then compared with the available experimental results.

The resultant formula, connecting the ratio between the separation distance and the height of the blowing slot and

the Archimedes number of the jet, is as follows:

xS th

a
¼ 3:6

Ar0:640

:

The agreement between the results of the theory proposed here and the available experimental results in the literature

bears out the validity of the theory. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fluid jets have a natural tendency to attach to walls

when projected close to them. That property occurs even

if a jet of air that is colder and therefore denser than the

ambient air is blown along a flat wall located above the

ambient air in a gravity field. If there is no wall (Fig. 1),

the streamlines of the flow curve down as soon as it

emerges from a plane slot and takes on an approximately

parabolic form, in accordance with the laws of gravity.

On the other hand, if the jet is projected below a wall

(Fig. 2), it stays attached to the wall and only moves

down at a distance of xS from its starting point. That

distance depends on the height of the blowing slot, the

temperature Tc and the velocity U0 of the jet and the

ambient temperature Th.

Figs. 1 and 2 are the result of bi-dimensional nu-

merical simulation of a planar turbulent jet from an

opening that is level with the ceiling at a height of 0.02 m,

at a horizontal velocity and initial temperature equal

to 1.4 m s�1 and 10 �C, respectively, while the ambient

atmosphere is at 20 �C. The positions of the jets are

marked by equal temperature lines.

The apparently paradoxical phenomenon, initially

described by Young [1] in 1800, was widely used in the

early 20th century by Coanda in the machines he in-

vented. That is why the effect has been given his name,

even though there is no written trace of his works.

Several experimenters [2–5] subsequently studied its ef-

fects, particularly for ventilation and air-conditioning

applications for rooms. However, they did not explain

its reason.
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This paper is aimed at filling that gap. It is based on

the study of the equilibrium of a layer of fluid that is

denser than the ambient fluid and is in motion in rela-

tion to the ambient fluid. The study results in a theo-

retical formulation of the separation distance of the jet.

After reviewing the classic properties of wall jets, from

which the velocity and temperature distribution can be

inferred, a theoretical analysis of the stability of the jet

will be made, resulting in the expression of the separa-

tion distance. By comparing the law with experimental

results, the validity of the theory is borne out.

2. Use of the knowledge of wall jets

The jets considered here are planar bi-dimensional

wall jets from a blowing slot of height a, of infinite

width, located just below a smooth wall (Fig. 3). These

jets have been the subject of many theoretical and

experimental studies. In a recapitulating book, Raja-

ratnam [6] provides the self-similar velocity and tem-

perature profiles stated below, which will be used in the

theoretical analysis in Section 3.

Nomenclature

a height of the blowing slot (m)

cp specific heat at constant pressure

ðJ kg�1 K�1Þ
g acceleration of gravity ðm s�2Þ
hm mean height of the jet at coordinate x (m)

Iu sum of f ðgÞ: see formula (7)

Iu2 sum of f 2ðgÞ: see formula (9)

Ih sum of hðgÞ: see formula (22)

Iuh sum of hðgÞf ðgÞ: see formula (7)

ku constant occurring in the law of velocity

inside the jet

kh constant occurring in the law of temperature

inside the jet

L width of the blowing slot (m)

pi pressure at point i (Pa)

qmðxÞ mass rate of flow in the jet at coordinates x

(kg s�1)

qmvðxÞ momentum rate of flow in the jet at coor-

dinates x (m kg s�2)

Tc temperature of cold air at the slot (K)

Th temperature of hot ambient air (K)

uðx; yÞ velocity inside the jet at coordinates ðx; yÞ
(m s�1)

UMðxÞ maximal velocity (m s�1)

U0 velocity of the jet at the slot (m s�1)

Vm mean velocity of the jet at coordinates x

(m s�1)

x horizontal distance from the slot (m)

xs separation distance of the jet (m)

y vertical distance from the slot (m)

a exponent of the velocity law

b exponent of the temperature law

k coefficient of the growing law of the jet

g ¼ y=ðkxÞ reduced ordinate

qðx; yÞ difference of density between a point of the

jet and the ambient air (kg m�3)

qc density of the cold air at the slot (kg m�3)

qh density of the hot ambient air (kg m�3)

qm mean density of the air inside the jet at co-

ordinate x (kg m�3)

hðx; yÞ difference of temperature between a point of

the jet and the ambient air (K)

HMðxÞ maximum difference of temperature between

the jet and the ambient air (K)

H0 difference of temperature between the jet

and the ambient air at the slot (K)

Ar ¼ ðDqmghmÞ=ðqhV
2
mÞ Archimedes number of the

jet at coordinate x

Ar0 ¼ ðagH0Þ=ðThU 2
0 Þ Archimedes number of the jet

at the blowing slot

Fig. 1. Lines of equal temperature of a jet of cold gas in a free

atmosphere.

Fig. 2. Lines of equal temperature of a cold jet flowing under a

flat adiabatic wall.
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In an area located sufficiently downstream from the

potential flow of the jet, if the transfers are to be dom-

inated by turbulent diffusion ðx=a > 20Þ, the horizontal

component of the velocity uðx; yÞ represented schemati-

cally in Fig. 3 is

uðx; yÞ
UMðxÞ

¼ f ðgÞ; ð1Þ

where the maximum velocity in the jet on abscissa x is

UMðxÞ ¼ ku
a
x

� �a
U0; ð2Þ

where ku and a are constants, g designates a reduced

ordinate: g ¼ y=ðkxÞ. Because of the similarity between

the velocity profiles, the value of k is constant and

function f is independent of the characteristics of the jet

and distance x.

Likewise, when the fluid is blown at a temperature

that is different from the ambient temperature, the

temperature difference between a point of the jet and the

ambient fluid is

hðx; yÞ
HMðxÞ ¼ hðgÞ; ð3Þ

where the maximum temperature difference in the jet on

abscissa x is

HMðxÞ ¼ kh
a
x

� �b
H0: ð4Þ

As before, kh and b are constants.

Assuming that air obeys the law of perfect gases,

using an asymptotic expansion to order 1 in H0=Th, the

density at any point of the jet is

qðx; yÞ ¼ qh 1

�
þ H0

Th

kh
a
x

� �b
hðgÞ

�
: ð5Þ

The mass flow rate per unit width L on the abscissa x is

then

qmðxÞ
L

¼ qmhmVm ¼
Z 1

0

qðx; yÞuðx; yÞdy

¼ qhkkuU0

a
x

� �a
x Iu

�
þ H0

Th

kh
a
x

� �b
Iuh

�
; ð6Þ

where the following is given:

Iu ¼
Z 1

0

f ðgÞdg and Iuh ¼
Z 1

0

f ðgÞhðgÞdg: ð7Þ

Integrals Iu and Iuh are constants as a result of the in-

dependence of functions f and h from x and the prop-

erties of the jet.

The horizontal momentum flow rate, per unit width,

is

qmvðxÞ
L

¼ qmhmV 2
m ¼

Z 1

0

qðx; yÞu2ðx; yÞdy

¼ qhkk
2
uU

2
0

a
x

� �2a
x Iu2
�

þ H0

Th

kh
a
x

� �b
Iu2h

�
: ð8Þ

The integrals involved in this formula are defined by

Iu2 ¼
Z 1

0

f 2ðgÞdg and Iu2h ¼
Z 1

0

f 2ðgÞhðgÞdg: ð9Þ

Given that because of the force of friction at the

ceiling, the momentum flow rate provided by relation-

ship (8) can only decrease when x increases, a is neces-

sarily greater than 0.5. The lower the loss of momentum

flow rate due to that friction, the a is closer to 0.5.

Rajaratnam [6] and Albright and Scott [7] supply a

number of numerical values for the constants used

above, and also experimental expressions for functions f

and h:

f ðgÞ ¼ 1:48g1=7½1� erfð0:68gÞ�; ð10Þ

hðgÞ ¼ exp½�0:8ðg � 0:1Þ1;4�
if g > 0; 1; hðgÞ ¼ 1 else: ð11Þ

The data can also be obtained by the numerical

integration of the momentum and enthalpy balance

equations associated with a turbulence model represen-

tative of flows in jets. The method was applied with a k–e
turbulence model, which does not use any wall law but

integrates the laminar boundary layer close to the walls.

Subject to the constraint of a fine mesh in the region

ðyþ < 5Þ that is involved by it, this model known as the

two-layer zonal model [8,9] provides satisfactory preci-

sion for turbulent flows with a low Reynolds number.

The upwind numerical scheme is used [10].

The domain was divided into 400 cells in the

lengthwise direction and 110 in the vertical direction. A

finer grid was used near the wall to follow the descrip-

tion of the laminar profile at the wall (first cell about

0.003 m thick).

The boundary conditions are:

• at the jet blowing slot (AB in Fig. 2): constant veloc-

ity and temperature (10 K below the ambient air in

all simulations);

• at the vertical wall with the blowing slot (AE in Fig.

2) and horizontal ceiling (BC in Fig. 2) considered to

be smooth: zero velocity and adiabatic walls;

Fig. 3. Transverse velocity profile in a planar wall jet.
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• the other limits (CDE in Fig. 2) represent communi-

cation with an infinite environment at the ambient

temperature: if the fluid leaves the calculation do-

main, the relative static pressure (gravity contribu-

tion not included) is imposed to a zero value; if the

fluid enters, the total pressure is imposed to a zero

value and the temperature is equal to the ambient

temperature.

Table 1 contains the features of the five jets studied

and the values of the constants resulting from this

method, which may be compared with those inferred

from reference (works) [6] and [7], directly or by means of

numerical integrations based on formulae (7), (9)–(11).

It can be seen that apart from k, when constants are

published by the experimenters, they do not vary much

from those obtained using the calculation.

Figs. 4 and 5 show the high quality of the correla-

tions (2) and (4) selected for the maximum velocity and

temperature variations relating to the five jets studied,

with different distances x.

As the bibliographical data contained in [6] and [7]

do not provide sufficiently complete results, the average

values from the simulations given in the last column but

one of Table 1 were used for what follows.

3. Jet attachment stability theory

The main hypothesis of the theory developed below is

that the velocity and temperature profiles are self-similar

as presented here above. This must be considered as a

very good hypothesis as it was observed by many ex-

perimentators. If a layer of immobile cool air is located

above a mass of warmer air, that mass of air cannot

enjoy a stable balance. That may seem obvious, but its

demonstration will act as a guide for the reasoning

outlined below in respect of jet attachment.

Table 1

Calculation of numerical values of jet constants

Jet 1 Jet 2 Jet 3 Jet 4 Jet 5 Jets average Value given by [6] or [7]

a 0.02 0.02 0.05 0.01 0.05

U0 1.4 2.0 1.4 2.5 1.0

H0 10 10 10 10 10

a 0.510 0.510 0.505 0.520 0.500 0.51 0.5

b 0.440 0.450 0.460 0.440 0.450 0.45 None

ku 3.43 3.54 3.56 3.55 3.39 3.5 3.5

kh 3.38 3.55 3.69 3.46 3.42 3.5 None

k 0.108 0.100 0.104 0.099 0.108 0.10 0.068

Iu 1.093 1.071 1.094 1.036 1.133 1.09 1.09

Iu2 0.761 0.747 0.756 0.724 0.783 0.76 0.75

Ih 1.160 1.146 1.125 1.119 1.166 1.14 1.17

Iuh 0.714 0.708 0.705 0.685 0.728 0.71 0.75

Iu2h 0.544 0.540 0.542 0.520 0.558 0.54 0.59

Fig. 4. Maximum velocity correlation.

Fig. 5. Maximum temperature difference correlation.
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As shown in Fig. 6, let us suppose an immobile layer

of air ðU0 ¼ 0Þ with a density of qc located just beneath

the ceiling of an enclosure filled with warmer air, with a

density qh that is therefore lower.

A small perturbation may occur in any place (point A

in Fig. 6) whereby a bubble of lighter air enters into the

colder air. Because of its buoyancy, the air bubble will

rise up to the ceiling. The time taken to transfer that air

particle is very short compared to its thermal time

constant. It may therefore be assumed that it retains its

temperature and therefore its density.

If losses due to the friction of the particle during its

transfer from A to B are ignored, the conservation of its

mechanical energy is expressed as follows:

pB ¼ pA � qhghm: ð12Þ

Now, if the law of the static of fluids is applied be-

tween points B and C in the cold air, the result is

pC ¼ pB þ qcghm: ð13Þ

As points A and D are on the same horizontal, they

have the same pressure. The following can then be in-

ferred from (12) and (13):

pC � pD ¼ ðqc � qhÞghm > 0: ð14Þ

In this way, a vertical downward force at the inter-

face between the cold (point C) and hot air (point D)

leads to a drop in the cooler layer of air with an unstable

equilibrium. This is evident, but as it shall be shown,

that equilibrium can become stable if the layer of air has

a certain velocity.

If the layer of air (jet parallel to the ceiling) moves

horizontally, the phenomenon of the transfer of a par-

ticle of hot air can occur here too. Let us assume that

there is such a transferred air bubble, whose size is

sufficient for its temperature and therefore its density to

remain unchanged during its move from A to B.

The separation between the air in the jet and the

ambient air is somewhat artificial. The jet thickness hm is

defined precisely with formula (18), where the values of

qm and Vm are defined by formulae (6) and (8).

Let Dp be the volume of mechanical energy loss of the

bubble for its travel from A to B. It is assumed that the

driving effect of the jet during that travel over the entire

thickness of the jet gives the particle mass a kinetic

energy equal to the mean mass kinetic energy of the jet.

The mechanical energy balance of the bubble during its

move from A to B is therefore

ðpA � qhghmÞ � pB

�
þ qh

V 2
m

2

�
¼ Dp: ð15Þ

If the current lines are assumed to be straight and

parallel to each other, the equation of the static of fluids

continues to apply between B and C, and may be written

as

pC � pB ¼
Z hm

0

qgdy: ð16Þ

As points A and D are on the same horizontal, they

have the same pressure. The following may be inferred

from (15) and (16):

pC � pD ¼ ðqm � qhÞghm � qh

V 2
m

2
� Dp; ð17Þ

where the mean density is defined by the formula

Dqmghm ¼ ðqm � qhÞghm ¼ g
Z hm

0

ðq � qhÞdy

	 g
Z 1

0

ðq � qhÞdy: ð18Þ

The jet will be stable if the pressure difference at the

interface pC � pD is negative, therefore creating an up-

ward force. The stability criterion for the jet on abscissa

x can be inferred to be

Ar ¼ ðqm � qhÞghm

qhV 2
m

¼ Dqmghm

qhV 2
m

6
1

2
þ Dp

qhV 2
m

: ð19Þ

A sufficient condition for jet stability is that the Ar-

chimedes number is less than 1/2, because the loss of

pressure Dp is always positive.

The jet remains stable as long as the Archimedes

number is less than 1/2, if the loss of pressure due to

friction is neglected. When the Archimedes number is

1/2, that provides a slightly underestimated value for the

abscissa xs of the fall of the jet in the ambient air.

In view of Eq. (5)

Dq ¼ qðx; yÞ � qh ¼ qh

HMðxÞ
Th

hðgÞ; ð20Þ

i.e., after integration

hmDqm

qh

¼ 1

qh

Z 1

0

Dqdy ¼ kh
H0

Th

a
x

� �b
Ihkx; ð21Þ

where

Ih ¼
Z 1

0

hðgÞdg: ð22Þ

The ratio of formulae (8) and (6) provides the average

velocity

Fig. 6. Schematic chart for the demonstration.
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Vm ¼ kuU0

a
x

� �a Iu2 þ khðH0=ThÞða=xÞbIu2h
Iu þ khðH0=ThÞða=xÞbIuh

: ð23Þ

Formulae (23) and (21) put into inequality (19),

which is changed into equality and in which the loss of

pressure Dp is ignored, provide the jet separation dis-

tance xs

xs
a
¼ K

Ar0

� �1=ð1�bþ2aÞ

ð24Þ

the initial Archimedes number of the jet being defined by

Ar0 ¼
agH0

ThU 2
0

ð25Þ

and the value of K being

K ¼ k2
u

2kIhkh

Iu2 þ khðH0=ThÞða=xÞbIu2h
Iu þ khðH0=ThÞða=xÞbIuh

" #2

: ð26Þ

The value of K is in principle dependent on distance

xs. For the temperature variations encountered, for in-

stance, in the field of air-conditioning, systematic nu-

merical testing has shown that the H0 terms in the

numerator and denominator in the expression of K given

to the second part of formula (26) are negligible.

That is due to the low difference between formulae

(26) and (27): 2% for a value of xs=a of 50, which may be

considered as the lower applicability limit of the for-

mula, and H0=Th of 10% which is, in air-conditioning,

the extreme temperature difference between the blown

air and the ambient air.

One could therefore say

K ¼ k2
u

2kIhkh

Iu2
Iu

� �2

: ð27Þ

4. Comparison with experimental results

Different authors have published experimental results

about the separation distance of anisothermal wall jets

in a gravity field, particularly Sandberg et al. [5], who

have been selected for the comparison with the previous

result, as they specify all their operating conditions. For

practical reasons, their experiment did not involve an

infinite planar jet, but a jet with a depth limited between

two parallel planes at a distance of 0.2 m from each

other, which is considerably less than the separation

distances observed. The resulting increase in friction

may lead to a reduction in the velocity, and therefore

give rise to an underestimation of the separation dis-

tances. For Archimedes number values at the blowing

slot located between 0.001 and 0.01, the following rela-

tionship may be inferred from these measurements be-

tween that number and the separation distance:

xS exp

a
¼ 1:7

Ar0:750

: ð28Þ

The application of the numerical values of the con-

stants established in Table 1 to formulae (23) and (26)

provides the following:

xS th

a
¼ 3:6

Ar0:640

: ð29Þ

As shown by Fig. 7, the two formulae (28) and (29)

provide very close results for the Archimedes number

interval in which the measurements are located – the

difference is practically nil for Ar0 ¼ 0:001 and is 20%

when Ar0 ¼ 0:01, which is the limit of validity of the

experimental relationship. The fact that the experimen-

tal value tends to be lower than the theoretical value is

consistent with the remark about the possible under-

estimation of the measured separation distance.

5. Conclusion

The theory presented is based on the analysis of the

stability of the equilibrium of a layer of gas moving

along a wall and subjected to a force tending to separate

it from the wall because the layer is made up of gas that

is heavier than the surrounding air. A formula (29) was

obtained to link the ratio between the jet separation

distance and the height of the discharge opening and the

initial Archimedes number of the jet. The only hypoth-

esis of the theory is that the velocity and temperature

profiles are self-similar which must be considered as a

very good hypothesis as it was observed by many ex-

perimentators.

The formula obtained in this way provides results

that agree with the experimentation of Sandberg et al.

Fig. 7. Comparison between theory and experiment.
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[5], especially in respect of low Archimedes number

values.

Provided that the basic hypothesis of self-similar

profile of velocity and temperature is satisfied, the the-

ory presented above can be extended to other cases, e.g.,

that of the flow of a jet with a constant density along a

convex wall, where gravity is replaced by the centrifugal

force. The separation of a jet from a cylindrical wall can

then be obtained using an approach similar to that de-

scribed here.
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